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Abstract— Social robotic navigation has been at the center
of numerous studies in recent years. Most of the research
has focused on driving the robotic agent along obstacle-free
trajectories, respecting social distances from humans, and
predicting their movements to optimize navigation. However, in
order to really be socially accepted, the robots must be able to
attain certain social norms that cannot arise from conventional
navigation, but require a dedicated learning process. We pro-
pose Heuristic Planning with Learned Social Value (HPLSV), a
method to learn a value function encapsulating the cost of social
navigation, and use it as an additional heuristic in heuristic-
search path planning. In this preliminary work, we apply the
methodology to the common social scenario of joining a queue
of people, with the intention of generalizing to further human
activities.

I. INTRODUCTION

In the last few years, the proliferation of robotic platforms
in society has inspired a significant amount of research in
the field of service robotics. Robots can provide support to
humans in a large number of specific tasks, such as helping
the elderly [1], [2], [3], giving classes to students [4], [5],
giving guided tours [6], [7], [8] and many more [9], [10].

In all these cases, how the robot interacts with people and
how human beings perceive it is often fundamental for the
successful completion of the service task [11]. Thus, tradi-
tional autonomous navigation, focused on avoiding obstacles
while reaching the goal, is often unsuitable. In addition to
conventional navigation metrics, like the distance to the goal
or the presence of static obstacles, robots can exploit naviga-
tion behaviors that consider social factors. Introducing social
information can lead to navigation policies able to access a
trade-off between performance and social acceptability. The
robot should not only respect others’ personal spaces, but
also comply with specific social norms. These norms include
planning aspects, such as navigating through cluttered and
crowded environments, and behavioural aspects, namely the
adaptation to social signals which can be inferred from
human actions [12].

We propose a novel method to augment classical path
planning with socially acceptable behaviours learned through
Reinforcement Learning (RL), at no additional planning cost.
We train a social agent able to recognize specific social
contexts; as a proof of concept, for this paper, we consider
the problem of following a queue. The learned value function
encapsulates the complexity of the social behaviour and
depends on all necessary external factors, such as the position
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and activity of other people in the environment, so that the
path planner does not have to take them into account. The
learned value function is combined with the heuristic used
by A*, which, with no change to the planning algorithm,
produces socially acceptable trajectories.

II. RELATED WORK

The problem of designing a behavioral policy able to
consider social factors has been studied for more than twenty
years. Following the RHINO [13] and MINERVA [14] de-
ployments as tour guides in museums, where people are
treated like dynamic, non-responsive obstacles, researchers
focused on autonomous navigation systems able to distin-
guish humans from inanimate objects.

An important paradigm in this area involves planning
around estimates of future human motion, which allows
the agent to plan an optimal trajectory avoiding collisions
with people and obstacles, and maintaining at any time a
social distance from humans. Human motion prediction is
usually achieved with deep neural networks, like generative
adversarial networks [15], convolutional neural networks
[16], [17] and attention transformers [18].

Another central body of work, which extends human
motion prediction, consists in intention-aware navigation.
Exploiting behaviour prediction models, it is possible not
only to predict future movements of humans, but also to
estimate their final goals. Bai er al. [19] model the uncer-
tainty of human intent in the Partially Observable Markov
Decision Process (POMDP) framework. Other works focused
on navigation in dense human crowds avoiding blockage
due to human activities [20], and cooperating with people
through interacting Gaussian processes [21]. Mavrogiannis
et al. employ geometric [22] and topological invariant [23]
representations to model the coupling among trajectories of
multiple navigating agents.

A different class of works have proposed Deep Rein-
forcement Learning for prediction in crowd navigation do-
mains. Chen et al. [24] apply CADRL, a deep reinforcement
learning framework for socially aware multiagent collision
avoidance. Everett et al. [25] exploit an actor-critic variant to
relax prior assumptions and learn policies and agent motion
models at the same time. Furthermore, Tai et al. [26] train a
generative adversarial imitation learning model on a dataset
generated using the social force model [27]. Finally, Chen
et al. [28] use attention-based reinforcement learning to
produce interaction-aware collision avoidance behaviors.

All the work cited above focuses on people movement:
their trajectory, their intention and their destination. How-
ever, a number of social norms are independent of movement,



but dependent on people’s activity. For instance, it is consid-
ered rude to walk between two people talking to each other,
even if they are just standing still. Our work is an initial
step in the direction of integrating arbitrary scene features
(not necessarily movement) into classical path planning.

Within queue following, the particular social navigation
scenario we consider in this paper, Nakauchi et al. [29]
designed a dedicated pipeline. In their work, they put great
attention on how a line of people can be defined and then
perceived by the autonomous agent. The navigation system
generates a series of goals (depending on the number of
people in the queue) until the back of the line is reached,
and does not provide full path planning.

III. METHODOLOGY

The main insight of our approach is that the social
component, which depends on people in the environment
and their activities, and the navigation component, which
only depends on position and orientation of the robot, can
be decoupled. The social component is trained off-line with
RL, and then re-integrated in the planner’s objective function.
We start by introducing the notation regarding task modeling
and heuristic-search planning.

A. Notation

We model the navigation task as a Markov Decision
Process (MDP) described by the tuple (S,A,P, R, γ) [30].
An agent starts its interaction with the environment in an
initial state s0, drawn from a distribution p(s0) and then
at every time step t selects an action at ∈ A from a state
st ∈ S which results into a new state st+1, receiving a reward
rt = R(st, at). A reinforcement learning process aims to
optimize a parametric policy πθ, which defines the agent
behavior. In the context of navigation learning, we model
the task as an episodic MDP, with maximum time steps
T . Hence, the agent is trained to maximize the cumulative
expected reward Eτ∼π

∑T
t=0 γ

trt over each episode, where
γ ∈ [0, 1) is the discount factor.

We use heuristic-search planners [31], such as A*, which
estimate the value of a given state s as the sum of the
cumulative cost up to s and a heuristic value from s,
minimizing the objective:

f(s) = gn(s) + hn(s), (1)

where n indicates that both functions are related to the
navigation objective. We will modify this objective by adding
a social component.

B. Planning Objective

In addition to the usual navigation cost and heuristic (cf.
Eq. 1), we want the planner to take also a social cost into
account when computing the optimal path. A social cost
would be non-zero, for instance, when a position would result
in the robot cutting a queue, or driving between two people
in a conversation. In this work, we assume the existence of
such a social cost function cs(s), which, in general, is also a
function of the goal. In principle, it is also possible to learn

this cost function from experience, but for this preliminary
work we assume is as known.

The social cost makes the problem effectively multi-
objective: the robot has to both minimize travel distance and
social cost. Since heuristic-search planners require a heuristic
function in addition to the cost function, and the social cost
is known, the rest of this methodology is devoted to the
definition of a social heuristic.

We modify the objective function of Equation 1 to take
both objectives into account, representing with the subscript
n the navigation component of the objective and with the
subscript s the social component of the objective:

f(s) = gn(s) + hn(s) + w(gs(s) + hs(s)), (2)

where w ≥ 0 is a parameter weighting the social cost over
the navigation cost.

The function gs is obtained by accumulation during plan-
ning of the cost cs, just like for its navigation counterpart.
The function hs is defined in the following section.

C. Social Heuristic

We propose to obtain the social heuristic function hs

through RL.
Environment The agent is trained in a fully observable
gridmap-like environment, with a given number of people
whose position and orientation in the grid is known.
State Space The state representation embeds the necessary
information about the goal and people, and it is ego-centric,
so that it does not depend on the particular coordinates used
in training. Different definitions are possible, depending on
the social behaviour one intends to capture. For our queue
following scenario we used:
• The distance dgt and the angle ∆θgt of the goal from the

agent.
• For every person in the environment, the distance dit and

the angle ∆θit of the ith person with respect to the agent.
The state space is, therefore, defined as:

S(t) = [dgt ,∆θgt , d
1
t ,∆θ1t , ..., d

i
t,∆θit]. (3)

Action Space The agent can choose to go forward, back-
ward, turn left, or right.
Reward We define the navigation reward rn as:

rn =

{
kg if goal is reached

dgt−1 − dgt − kr otherwise,
(4)

where dgt is the distance of the goal from the agent, dgt−1

is the distance of the goal at the previous time step, kg is
a large reward received when the goal is reached, and kr is
a small value implemented to encourage convergence in as
few steps as possible. The social reward is the opposite of
the weighted social cost: rs = −wcs.
We train an RL agent to maximize rT = rn + rs with
standard RL, and, in doing so, it learns a value function QT .
At the same time, the agent learns a second value function
Qs, trained to estimate the expected cumulative unweighted
social component of the reward. This social value function is



(a) Traditional A∗ (b) Social Cost Function (c) Integration of A∗ with Social Cost Function

Fig. 1: Results obtained from the demo discrete environment: cyan and green points are respectively the start and goal
points, orange arrows represent people, small blue dots are the trajectory chosen by the planner, and red dots are the virtual
obstacles. Black cells represent cells associated with a high cost, while the cost decrease as they turn to light grey. (a)
represents the path chosen by a traditional A∗ search algorithm, and (b) shows the costs added by the Social Cost Function
cs extracted from Qs. In contrast, (c) represents the path chosen by the A∗ algorithm integrated with the Social Cost Function
cs.

trained on reward rs only. Note that, during learning, actions
are only selected so as to maximize QT . That is, the function
Qs is learned entirely as a side effect of maximizing QT , and
does not affect the behaviour policy. This is crucial because
Qs does not encode the navigation goal. For instance, in
following a queue, maximizing QT leads the agent to wait
at the end of the queue, while maximizing Qs would only
lead the agent to stay away from people in order to avoid
the potential cost of cutting the queue. So, while executing
and learning the full task, the agent also stores a long-
term estimate of the social cost for later use as a planning
heuristic.

D. Deployment
In the deployment phase, the value function QT is dis-

carded, since we are only interested in the social components
of the objective function gs and hs as in Equation 2. These
components are extracted from the social value function Qs.
In particular, the heuristic social component is computed as:

hs(s) =

{
cs(s) if cs(s) > kthresh

0 otherwise
(5)

cs(s) = 1−Qs(s, as−→s, θs) (6)

Where st is the agent observation at time t, as−→s is
the action that brings the agent from the current state s−

to the next state s, θs are the trained social wights, and
Qs(st, as−→s, θs) is the value predicted by the action-value
function Qs when the action as−→s is taken starting from
the state s−. Finally, kthresh is a confidence threshold: if the
cost cs(s) exceeds this value, the agent is making a strong
assumption on which direction (not) to take. This configu-
ration allows the A∗ algorithm to manage the general path
planning, while the social component adds its contribution
only when the social scenario is recognized.

Moreover, the cumulative social cost gs(s) is defined as:

gs(s) = gs(s
−) + cs(s) (7)

IV. EXPERIMENTS AND RESULTS

To validate our methodology, we trained a HPLSV agent
exploiting a customized version of the TF2RL library [32].
As a proof of concept, we consider the social scenario of
a queue of people, where the agent has to enter the queue
without cutting it. At first, the agent is trained in a demo
gridmap environment, where people are perfectly aligned
with the goal, and the distance between the goal and the first
person, and between each person, has the same value. Then,
a series of close-to-real environments are obtained from a
Gazebo simulation, and are used to retrain the agent. In
the next paragraphs, the results obtained in each of these
environments are presented.

A. Discrete environment

The first environment presents a 30x30 gridmap. The goal
is placed in the center of this gridmap, and two other entities,
representing people in line, are placed just above the goal.
One cell separates the goal from the first person, and another
cell is left between the two people. The three entities, the
goal and the two people, are aligned on the x axis. We define
virtual obstacles as a continuous box surrounding people and
goal, which leaves just a passage to the goal at the end of the
queue. If the agent hits the virtual obstacle, it is equivalent
to cutting the queue, and it receives the corresponding social
cost. During initial training episodes, the agent always starts
from the same position, at the bottom left of the gridmap.
Then, in order to enhance exploration, the starting point is
changed after each episode, until the end of the training.



Fig. 2: Results obtained on a much bigger environment
compared to the one used for training. The social cost
function does not interfere with the traditional planner until
the social scenario is reached.

For the considered scenario of a queue of people, the social
reward function rs is defined as:

rs =

{
−ks if the virtual obstacle is crossed
0 otherwise

(8)

Where ks is a small value received every time the agent
cross a virtual obstacle.

To test and validate the model, it is integrated with a
classic A∗ planner, as explained at Section III-D. Figure 1a
shows the path chosen by the A∗ planner without any other
external contribution, with the related costs. In this case the
planner just drives the agent towards the goal, cutting the
line. Figure 1b shows the costs added by the social action-
value function Qs extracted from the trained model. Finally,
Figure 1c shows the path and the costs obtained by the A∗

planner integrated with our trained model. In contrast with
the previous case, the planner is now able to recognize the
social scenario and extract an optimal path to the goal which
passes through the end of the queue, avoiding to cut it.

The ego-centric representation of the heuristic makes it
independent of coordiantes, as shown in Figure 2, where
a much larger 100x100 gridmap testing environment is
employed. The social component of the objective does not
activate (the expected social cost of actions is 0) until the
agent gets near the goal. This allows the traditional planner to
compute an optimal trajectory towards the goal without any
other interference. Then, when the queue is reached, the costs
introduced by the social contributions increase, avoiding to
cut the line.

Fig. 3: Results obtained from the continuous environmet.

B. Continuous environments

A series of different environments are obtained from a
Gazebo simulation, to train and test the agent in more
realistic conditions. People and goals are manually set in a
continuous environment, in order to recreate a realistic queue
scenario. Each of these environments are then discreteized
into a 30x30 gridmap with a resolution of 0.2 meters. The
virtual obstacles are defined as a box similar to demo version,
at a distance of 0.5 meters from the goal and from each
person. The new obtained discrete environments are then
used to retrain the previous DRL agent. During the training
both, the starting point of the agent and the environment, are
randomly changed after every episode. Similarly to before,
the model is integrated with the A∗ planner, and the results
can be observed in Figure 3.

V. CONCLUSIONS

We introduced Heuristic Planning with Learned Social
Value (HPLSV), a novel RL-based human-aware path plan-
ning method. For these preliminary results, we developed a
proof of concept on queue following, but intend to extend
the methodology to more, if not all, human activities.

The greater limitation of our approach resides in the choice
of a proper representation for the working environment.
In this work we assumed to know the exact position and
orientation of all and only the people in the queue. In the
real world, a scene may have many people, most of which
have nothing to do with the navigation task. Recognising and
interpreting human activity is part of the social navigation
challenge, and we do not expect the heuristic function to
be able to solve this problem end-to-end, directly for robot
sensory inputs. Another strong assumption is the a priori
knowledge of the social cost function, represented in training
with virtual obstacles. In general, it would be interesting to
learn it from real human-robot interactions.
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